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Abstract. A new method for calculating the stored elastic energy of epitaxial strained layers 
conlaining misfit interfacial dislocations is presented. The method differs from previous 
approaches in thal i t  explicitly takes into acmunt all dislocationdislocation interactions and 
inlerections between dislocations and the mismatch stress. The method is unique in thal it 
can be used to calculate the energy of finite andlor irregularly spaced systems of dislocations. 
Exampies are given comparing the energy per unit area of finite and non-uniform systems of 
dislocation$ calculated using the present approach with that dculated for the infinite uniform 
ose. 

Thin film stmctures involving epitaxially strained layers (figure 1)  are increasing in both 
scientific and technological importance, e.g. Sil-,Ge, alloy films on Si substrates for 
microelectronic devices. In many cases of interest the film has the same crystal structure 
as the substrate but has a different lattice parameter which defines a mismatch strain, 
fm = (ajayer - uSU~lmte)/a6UbSme For film thickness, h,  below a critical thickness, h,, 
the mismatch is accommodated by a homogeneous straining of the film (pseudomorphic 
film) with an induced biaxial stress 

- 

00 = -2PIU + U)/(] - u)lfm (1) 

and stored elastic energy 

WO = LL’2p[(I + u)/( l  - U)lfih. (2) 

In these expressions @ is the shear modulus and U is the Poisson ratio of the film. For h z h, 
the mismatch is increasingly accommodated by misfit dislocations at the interface between 
substrate and film as the introduction of dislocations relieves some of the mismatch strain 
and reduces the stored elastic energy. It is necessary to be able to calculate the stored energy 
for any potential configuration of misfit dislocations in order to (a) predict the minimum 
energy configuration which would correspond to the thermodynamic equilibrium state and 
(b) estimate the excess energy of an observed configuration which will provide the driving 
force for subsequent relaxation towards the equilibrium configuration. 

This problem has been considered many times previously, e.g. [ 1-41, but early attempts 
[2,31 did not take interactions between dislocations intoaccount properly 151. An attempt has 
been made recently to consider explicitly the interaction between dislocations [6]. However, 
in that treatment the interaction was limited to nearest neighbours and the total energy was 
not synthesized correctly in that the interactions considered do not correspond to the total 
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I \ \  Figure 1. The geometry and coordinates 
of onhogonal misfit dislocations aI the 
interface between a bulk subsuate and a 

I I \  \ 
\I 
\ \  
\i stained epilaxaxial layer. 
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stress distribution. Great care must be taken in synthesizing energies from the component 
parts of the system. In linear elasticity, as usually assumed, the stresses from various 
sources in the system are additive, but the energies are not because the energy density is 
proportional to the square of the local stress. The concept of ‘interaction energy’ allows 
the energies to be additive provided that all interactions are included and that the sources 
of interactions synthesize the total stress distribution. This is not the case in [6]  because 
the interaction between each dislocation and the initial misfit stress is not included fully 
by considering only the energy associated with the average stress in the layer. A went  
theory 141 has included these interactions rigorously, but is only valid for infinite arrays of 
uniformly spaced dislocations. (It has been shown using this theory that the interactions 
reduce the total energy with respect to that erroneously obtained by adding the dislocation 
self-energies to the mean strain energy [SI. Adding nearest neighbour interactions, as in 161 
only Serves to increase the error.) 

In general, however, experimental observations show that the dislocations are not 
uniformly-spaced and are finite in number, e.g. [7]. Thus the existing exact theory [SI does 
not strictly apply to most situations of practical interest. In the present work a new approach 
to calculating the stored elastic energy of strained layers containing misfit dislocations is 
presented that can be applied to finite systems and/or irregularly spaced dislocations. 

The method of calculation employed here is based on the following principles: 

(a) starting from the pseudomorphic configuration the incremental energies are summed 
as each dislocation is introduced sequentially; 

(b) linear elasticity is assumed so that the stresses and strains from different sources can 
be superposed; 

(c) the energy increment for introducing any given dislocation is equal to the work 
done by displacing the surfaces of an imaginw ‘cut’ in the material by a Burgers vector, 
b (defined as the vector from start to finish after a right-handed circuit of lattice sites in the 
defective crystal), against the intemal stresses acting on the surfaces of the cut, i.e. [8] 

The stress distribution on the faces of the cut is u~uu‘ris, before the deformation takes place 
and Uiniiiri + Au when deformation is complete. Thus Au is the self-stress field of the 
dislocation being introduced. The cut can be along any surface starting at the dislocation 
core and ending either at a free surface or infinity. In this method the core is regarded as 
a hollow cylinder of radius 9 (approximately equal to b), and thus the calculated energy 
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is that stored in the region outside the core. For convenience we select the cut surface S 
starting at the dislocation core on the plane x = h - q (figure 1) and extending in the x 
direction to the surface of the epitaxial layer. 

For a single set of N dislocations spaced on the y-axis and aligned parallel with the z 
direction (figure I )  this leads to the following expression for the total energy 

in which Eo is the self-energy of a dislocation and &(dij) is the energy of interaction 
between a pair of dislocations separated by distance d i j .  The second term in (4) is the work 
done against the misfit stress, the third is the self-energy of non-interacting dislocations and 
the fourth term is the summation of all the interactions between pairs of dislocations in the 
system (the factor of two arises because the summation as written counts the energy of a 
given pair of dislocations twice: as dij and dji). The energy given by (4) does not depend 
on assuming any periodicity or average spacing of the dislocations. 

In general the crystallographic constraints will lead to more than one set of dislocations 
being present. Here we consider systems in which there are two sets of dislocations of the 
same type with orthogonal dislocation lines and f, the same in each direction (this will 
apply to epitaxial layers grown on the [loo] face of cubic crystals, but the analysis can be 
extended to any geometry). For each dislocation in the second set there will be present an 
additional stress due to the overall strain caused by the first set. In the coordinate system 
of the first set the overall strains due to the first set are 

(eyy) = Nb,/L (ezy) = NbZ/2L' (5) 

and the corresponding stresses relevant to the Burgers displacement of the second set are 

(U*,) = I2!4(l - " y )  ( G y )  = 2PL(Ezy).  (6) 

These are converted into stresses for the second set by the transformation ( x ,  y ,  z) = 
(x ' ,  z' - y'). The inclusion of these stresses leads to the following expression for the energy 
of a strained epilayer containing a two-dimensional network of N by N' dislocations: 

In this derivation the energy associated with the intersections of the two orthogonal sets of 
dislocations is neglected. 

The self-energy per unit length of a dislocation at a distance h below a free surface is 
given from (3) by (neglecting the non-elastic core energy) 

and the interaction energy per unit length by 

1 ,h-o 
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The stresses are those for a single dislocation located on the line (h ,O,z)  and the 
contributions from br and b, (edge components) are calculated from the stress function x 
by double differentiation [9]  

The stress function, for the case in which the elastic constants of the substrate and the 
epitaxial layer are equal, is [9]  

x = b b x / [ 2 X ( l  - v)l)[r(Inrz - I n n )  - 2hxylr;l 

+ {phy/[2ir( l  - v ) l ) [ - ( x  - h)  lnrl + ( x  - h)  I n n  - h + (Urx/r:)(x + h ) ]  

(11) 

where r ,  and r2 are shown in figure 1. The stresses resulting from 6,. the screw component, 
=e [91 

These stresses completely satisfy the necessary boundary condition that all components 
normal to the free surface (i.e. x components) be zero at the free surface (x  = 0). (For 
the screw contributions this is satisfied exactly by an image construction, equation (12). 
but the image construction is not sufficient for the edge contributions and equation (1 1) 
contains extra terms in addition to those resulting from the image.) The boundary condition 
is satisfied for each individual dislocation in the system and therefore the total energy 
expressions do not depend on any assumptions concerning the nature of the dislocation 
distribution (e.g. periodic spacing). Substitution of these stresses into equations (8) and (9) 
leads to the following expressions for ED: 

and E,(d), when both h and d are much greater than 9: 

where a = h / d .  Both EO and Er are logarithmically divergent in an infinite medium (i.e. as 
h tends to infinity). The interaction energy falls off rapidly as the interdislocation distance 
increases beyond h because the free surface limits the 'range' of the stress ficld of each 
dislocation and screens one dislocation from the others. 

By using the above expressions (equations (13) and (14)) for ED and El in equation (7) 
the total stored elastic energy of a finite andlor irregular two-dimensional net of orthogonal 
dislocations having arbitrary Burgers vector may be calculated. 
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Figure 2. The energy per unit ana of a 
two-dimensional finite array of N x N edge 
dislocations, W(N). compared with that of an 
infinite array [IO]. The curves correspond to 
different values of h l p .  

Figure 3. The energy per unit area calculated 
for edge dislocations of irregular spacing I1 I]. 
The film thickness was Wen to be 255 A, 
which is approximately 2h, for the parameters 
chosen. The different C U N ~  correspond to 
different values of the standard deviation in 
dislocation spacing relative 10 the mean. These 
values are: curve 1.0; curve 2, 0.3; curve 3. 
0.45; curve 4. 0.6. 

For the special case of a two-dimensional array of regularly spaced dislocations 
equation (7) may be simplified to give the energy per unit area as 

where p is the nearest neighbour distance and is a constant. In a regular array interdislocation 
distances, dij ,  are integer multiples of the periodic spacing, p; hence the appearance of the 
product, ip, in the summation of dislocation-dislocation interaction energies. We have 
used a less general form of (15). applicable only to so-called 90" dislocations having 
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b = (0, h,. 0). to calculate the energy per unit area when the number of dislocations is 
finite [IO]. The results (figure 2) show that the energy per unit area of a finite system of 
dislocations is lower than that of an infinite system by a percentage that increases as the 
ratio h / p  increases [IO]. Also, the present method gives identical results to those of the 
theory of Willis et a1 as N tends to infinity (i.e. for infinite regular dislocation arrays). 

Equation (7) has been used to calculate the effect of non-uniformity of nearest neighbour 
dislocation spacing on the energy of the system [Ill.  The results (figure 3) show that the 
effect of increasing non-uniformity, while maintaining constant average nearest neighbour 
dislocation spacing, is to increase the energy of the system. These results are of particular 
importance for the relaxation of strain in layers thicker than the critical thickness. They 
explain the experimental observation that, even for layers grown or annealed at high 
temperature and thus expected to be close to equilibrium, shah relaxation in Sil-,Ge, 
layers is always much less than predicted by equilibrium theory assuming uniformly spaced 
dislocations. 

A Atkinson and S C Jain 
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